【經驗分享】淺談去耦電容的重要性
- 何謂正確去耦?有何必要性?
?
- 實際電容及其寄生效應
- 去耦電容類型
- 局部高頻去耦建議
- 由LC去耦網絡構成的諧振電路
- 不良去耦技術對性能的影響
?
為什么IC需要自己的去耦電容?
?
為了保證高頻輸入和輸出。
?
每個集成電路(IC)都必須使用電容將各電源引腳連接到器件上的地,原因有二:防止噪聲影響其本身的性能,以及防止它傳輸噪聲而影響其它電路的性能。
?
電力線就像天線一樣,可能會拾取其它地方的高頻(HF)噪聲,然后通過電場、磁場、電磁場和直接傳導等方式耦合到系統中。電源端的高頻噪聲會影響許多電路的性能,因此,必須將IC電源上存在的任何高頻噪聲短接到地。為實現噪聲短接,我們不能使用導體,因為它會造成直流短路,燒毀保險絲,但可以使用電容(通常為1nF至100nF),它不僅能隔直,而且能實現高頻噪聲的短路連接。
?
1cm導線或PC走線具有大約8nH的電感(5Ω、100MHz時),很難形成短路。用作高頻短路的電容必須具有較低的引線和PC走線電感,因此,各電源電容必須非常靠近它去耦的IC的兩個引腳。選擇內部電感較低的電容也很重要,通常使用陶瓷電容。
?
許多IC中的電路會在電源端產生高頻噪聲,這種噪聲也必須通過跨接在電源上的電容進行短路,以免破壞系統的其它部分。同樣,引線和PC走線的長度至關重要:一方面,長引線會充當電感,使短路不夠理想;另一方面,長導體會充當天線,通過電場、磁場和電磁場等方式將高頻噪聲傳輸到系統的其它部分。
?
因此,每個IC的每個電源引腳都應通過電感非常低的電容連接到IC的地引腳,地引腳可能有多個,必須利用較寬的低電感PC走線將所有地引腳接合在一起,使之成為單個低阻抗等電位星型接地點,這一點非常重要。
?
采用去耦和不采用去耦的緩沖電路(測量結果)
?
為帶去耦電容器和不帶去耦電容器(C1 和C2)情況下用于驅動 R-C 負載的緩沖電路。我們注意到,在不使用去耦電容器的情況下,電路的輸出信號包含高頻 (3.8MHz) 振蕩。對于沒有去耦電容器的放大器而言,通常會出現穩定性低、瞬態響應差、啟動出現故障以及其它多種異常問題。
?
帶去耦合和不帶去耦合情況下的電流
?
?
電源線跡的電感將限制暫態電流。去耦電容與器件非常接近,因此電流路徑的電感很小。在暫態過程中,該電容器可在非常短的時間內向器件提供超大量的電流。未采用去耦電容的器件無法提供暫態電流,因此放大器的內部節點會下垂(通常稱為干擾)。無去耦電容的器件其內部電源干擾會導致器件工作不連續,原因是內部節點未獲得正確的偏置。
?
PCB板中去耦電容的分類
?
去耦電容在補償集成片或電路板工作電壓跌落時能起到儲能作用。它可以分成整體的、局部的和板間的三種。整體去耦電容又稱旁路電容,它工作于低頻(<1MHz)范圍狀態,為整個電路板提供一個電流源,補償電路板工作時產生的ΔI噪聲電流,保證工作電源電壓的穩定。它的大小為PCB上所有負載電容和的50~100倍。它應放置在緊靠PCB外接電源線和地線的地方,印制線密度很高的地方。這不僅不會減小低頻去耦,而且還會為PCB上布置關鍵性的印制線提供空間。
?
局部去耦電容有兩個作用。
?
第一,出于功能上的考慮:通過電容的充放電使集成片得到的供電電壓比較平穩,不會由于電壓的暫時跌落導致集成片功能受到影響;
?
第二,出于EMC考慮:為集成片的瞬變電流提供就近的高頻通道,使電流不至于通過環路面積較大的供電線路,從而大大減小向外的輻射噪聲。同時由于各集成片擁有自己的高頻通道,相互之間沒有公共阻抗,抑止了其阻抗耦合。局部去耦電容安裝在每個集成片的電源端子和接地端子之間,并盡量靠近集成片。
?
板間去耦電容是指電源面和接地面之間的電容,它是高頻率時去耦電流的主要來源。板間電容可以通過增加電源層和接地層間面積來增大。在PCB中,一些接地面可以布到了電源層,移去這些接地面,用電源隔離區代之,可以增加板間電容。
?
PCB板中去耦電容的大小
?
在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流,形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生的噪聲,是印制電路板的可靠性設計的一種常規做法,好的高頻去耦電容可以去除高到1GHz的高頻成分。陶瓷片電容或多層陶瓷電容的高頻特性較好。設計印制線路板時,每個集成電路的電源、地之間都要加一個去耦電容。去耦電容有兩個作用:一方面是本集成電路的蓄能電容,提供和吸收該集成電路開門關門瞬間的充放電能;另一方面旁路掉該器件的高頻噪聲。去耦電容的配置原則如下:
?
1、電源分配濾波電容
?
電源輸入端跨接一個10μF~100μF的電解電容器,如果印制電路板的位置允許,采用以上的電解電容器的抗干擾效果會更好。1μF,10μF電容,并行共振頻率在20MHz以上,去除高頻率噪聲的效果要好一些。在電源進入印制板的地方和一個1μF或10μF的去高頻電容往往是有利的,即使是用電池供電的系統也需要這種電容。
?
2、芯片配置去耦電容
?
為每個集成電路芯片配置一個0.01μF的陶瓷電容器。數字電路中典型的去耦電容為0.1/μF的去耦電容有5nH分布電感,它的并行共振頻率在7MHz左右,也就是說對于10MHz以下的噪聲有較好的去耦作用,對40MHz以上的噪聲幾乎不起作用。如遇到印制電路板空間小而裝不下時,可每4~10個芯片配置一個1μF~10μF鉭電解電容器,這種器件的高頻阻抗特別小,在500kHz~20MHz范圍內阻抗小于1μF~10μF而且漏電流很小(0.5μA以下)。去耦電容值的選取并不嚴格,可按C=1/f計算,即10MHz取0.1μF。對微控制器構成的系統,取0.1μF~0.01μF之間都可以。
?
3、必要時加蓄放電容
?
每10片左右的集成電路要加一片充放電電容,或稱為蓄放電容,電容大小可選10μF。通常使用的大電容為電解電容,但是在濾波頻率比較高時,最好不用電解電容,電解電容是兩層薄膜卷起來的,這種卷起來的結構在高頻時表現為電感,最好使用鉭電容或聚碳酸酯電容。
?
良好與糟糕 PCB 板面布局的對比
?
除了使用去耦電容器外,還要在去耦電容器、電源和接地端之間采取較短的低阻抗連接。將良好的去耦合板面布局與糟糕的布局進行了對比。應始終嘗試著讓去耦合連接保持較短的距離,同時避免在去耦合路徑中出現通孔,原因是通孔會增加電感。大部分產品說明書都會給出去耦合電容器的推薦值。如果沒有給出,則可以使用 0.1uF。
?
PCB布板時去耦電容的擺放問題
?
相信對做硬件的工程師,畢業開始進公司時,在設計PCB時,老工程師都會對他說,PCB走線不要走直角,走線一定要短,電容一定要就近擺放等等。但是一開始我們可能都不了解為什么這樣做,就憑他們的幾句經驗對我們來說是遠遠不夠的哦,當然如果你沒有注意這些細節問題,今后又犯了,可能又會被他們罵,“都說了多少遍了電容一定要就近擺放,放遠了起不到效果等等”,往往經驗告訴我們其實那些老工程師也是只有一部分人才真正掌握其中的奧妙,我們一開始不會也不用難過,多看看資料很快就能掌握的。直到被罵好幾次后我們回去找相關資料,為什么設計PCB電容要就近擺放呢,等看了資料后就能了解一些,可是網上的資料很雜散,很少能找到一個很全方面講解的。工作兩年后,我看到了相關人士講的相關文章。下面這篇文章是我轉載于博士的一片關于電容去耦半徑的講解,相信你看了之后可以很牛x的回答和避免類似問題的發生。
?
老師問:為什么去耦電容就近擺放呢?
?
學生答:因為它有有效半徑哦,放的遠了失效的。
?
電容去耦的一個重要問題是電容的去耦半徑。大多數資料中都會提到電容擺放要盡量靠近芯片,多數資料都是從減小回路電感的角度來談這個擺放距離問題。確實,減小電感是一個重要原因,但是還有一個重要的原因大多數資料都沒有提及,那就是電容去耦半徑問題。如果電容擺放離芯片過遠,超出了它的去耦半徑,電容將失去它的去耦的作用。
?
理解去耦半徑最好的辦法就是考察噪聲源和電容補償電流之間的相位關系。當芯片對電流的需求發生變化時,會在電源平面的一個很小的局部區域內產生電壓擾動,電容要補償這一電流(或電壓),就必須先感知到這個電壓擾動。信號在介質中傳播需要一定的時間,因此從發生局部電壓擾動到電容感知到這一擾動之間有一個時間延遲。同樣,電容的補償電流到達擾動區也需要一個延遲。因此必然造成噪聲源和電容補償電流之間的相位上的不一致。
?
當擾動區到電容的距離達到時,補償電流的相位為pi,和噪聲源相位剛好差180度,即完全反相。此時補償電流不再起作用,去耦作用失效,補償的能量無法及時送達。為了能有效傳遞補償能量,應使噪聲源和補償電流的相位差盡可能的小,最好是同相位的。距離越近,相位差越小,補償能量傳遞越多,如果距離為0,則補償能量百分之百傳遞到擾動區。這就要求噪聲源距離電容盡可能的近,要遠小于1/4波長。實際應用中,這一距離最好控制在之間1/40~1/50波長,這是一個經驗數據。
?
例如:0.001uF陶瓷電容,如果安裝到電路板上后總的寄生電感為1.6nH,那么其安裝后的諧振頻率為125.8MHz,諧振周期為7.95ps。假設信號在電路板上的傳播速度為166ps/inch,則波長為47.9英寸。電容去耦半徑為47.9/50=0.958英寸,大約等于2.4厘米。
?
本例中的電容只能對它周圍2.4厘米范圍內的電源噪聲進行補償,即它的去耦半徑2.4厘米。不同的電容,諧振頻率不同,去耦半徑也不同。對于大電容,因為其諧振頻率很低,對應的波長非常長,因而去耦半徑很大,這也是為什么我們不太關注大電容在電路板上放置位置的原因。對于小電容,因去耦半徑很小,應盡可能的靠近需要去耦的芯片,這正是大多數資料上都會反復強調的,小電容要盡可能近的靠近芯片放置。
?
“旁路電容”和“去耦電容”
?
今天在看CAN總線資料時突然看到can原理圖TJA1050 CAN收發器電源管腳外接電源時節了一個電容到地,突然想起昨天同事說布線時電源要先連接電容再接到芯片電源管腳那時不知所云,但是今天又遇到所以便開始了我的“瞎琢磨”....
?
這個電容到底有什么用呢?
?
為什么用的是0.1uf 大小的電容,這個值有沒有要求?
?
一查百度,發現他叫“旁路電容”,如果放在另外的位置它叫“去耦電容”,神奇呀!
?
下面我們來說是“旁路電容”和“去耦電容”:(有點抄百度的節奏)
?
一.定義和區別
?
旁路(bypass)電容:是把輸入信號中的高頻成分作為濾除對象;
去耦(decoupling)電容:也稱退耦電容,是把輸出信號的干擾作為濾除對象。
去耦電容和旁路電容都是起到抗干擾的作用,電容所處的位置不同,稱呼就不一樣了。
?
高頻旁路電容一般比較小,根據諧振頻率一般是0.1u,0.01u等,而去耦合電容一般比較大,是10u或者更大
?二.作用
?
?去耦電容:
?
去耦電容主要有2個作用:
?
(1)去除高頻信號干擾;
?
(2)蓄能作用;(而實際上,芯片附近的電容還有蓄能的作用,這是第二位的)
?
高頻器件在工作的時候,其電流是不連續的,而且頻率很高,而器件VCC到總電源有一段距離,即便距離不長,在頻率很高的情況下,阻抗Z=i*wL+R,線路的電感影響也會非常大,會導致器件在需要電流的時候,不能被及時供給。而去耦電容可以彌補此不足。這也是為什么很多電路板在高頻器件VCC管腳處放置小電容的原因之一(在vcc引腳上通常并聯一個去耦電容,這樣交流分量就從這個電容接地。)
?
附加:
?
所謂的藕合:是在前后級間傳遞信號而不互相影響各級靜態工作點的元件有源器件在開關時產生的高頻開關噪聲將沿著電源線傳播。去耦電容的主要功能就是提供一個局部的直流電源給有源器件,以減少開關噪聲在板上的傳播和將噪聲引導到地。從電路來說,總是存在驅動的源和被驅動的負載。如果負載電容比較大,驅動電路要把電容充電、放電,才能完成信號的跳變,在上升沿比較陡峭的時候,電流比較大,這樣驅動的電流就會吸收很大的電源電流,由于電路中的電感,電阻(特別是芯片管腳上的電感,會產生反彈),這種電流相對于正常情況來說實際上就是一種噪聲,會影響前級的正常工作。這就是耦合。去耦電容就是起到一個電池的作用,滿足驅動電路電流的變化,避免相互間的耦合干擾。
?
三.為什么用的是0.1uf 大小的電容,這個值有沒有要求?
?
有源器件在開關時產生的高頻開關噪聲將沿著電源線傳播。去耦電容的主要功能就是提供一個局部的直流電源給有源器件,以減少開關噪聲在板上的傳播和將噪聲引導到地。
?
去耦電容在集成電路電源和地之間有兩個作用:一方面是本集成電路的蓄能電容,另一方面旁路掉該器件的高頻噪聲。數字電路中典型的去耦電容值是0.1μF。這個電容的分布電感的典型值是5μH。0.1μF的去耦電容有5nH的分布電感,它的并行共振頻率大約在7MHz左右,也就是說,對于10MHz以下的噪聲有較好的去耦效果,對40MHz以上的噪聲幾乎不起作用。1μF、10μF的電容,并行共振頻率在2MHz以上,去除高頻噪聲的效果要好一些。每10片左右集成電路要加一片充放電電容,或1個蓄能電容,可選10μF左右。最好不用電解電容,電解電容是兩層薄膜卷起來的,這種卷起來的結構在高頻時表現為電感。要使用鉭電容或聚碳酸酯電容。去耦電容的選用并不嚴格,其電容值可按C=1/F來計算,即10MHz取0.1μF,100MHz取0.01μF。
?
簡單總結——去耦電容和旁路電容都是起到抗干擾的作用。對于同一電路來說,旁路電容是把輸入信號中的高頻噪聲作為濾除對象,把前級攜帶的高頻雜波濾除,而去耦電容也稱退耦電容,是把輸出信號的干擾作為濾除對象。去耦電容用在放大電路中不需要交流的地方,用來消除自激,使放大器穩定工作。